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Introduction
Recent articles in this Journal have discussed the 

role of artificial intelligence (AI) in research writing 
and manuscript preparation, recognizing its immense 
power to streamline the scientific publication workflow 
as well as addressing concerns for academic integrity 
and unvalidated output.1,2 These opportunities and 
obstacles extend throughout the clinical research 
landscape. Clinical trials in the pediatric population are 
particularly challenging and may benefit considerably 
from AI where both existing and novel therapies are 
understudied and most drugs continue to be used off-
label without adequate dosing, efficacy, and safety data 
to inform prescribing.3 Challenges persist with dose and 
endpoint selection, patient and disease heterogeneity, 
and patient recruitment.4 The great potential for AI is to 
reduce the high cost and time investments of traditional 
randomized controlled trials by overcoming the many 
population-specific barriers with innovative strategies.

AI has the capability to improve numerous aspects 
of the clinical trial process to help overcome these 
hurdles. The spectrum of available methods ranges 
from traditional regression models to deep learning 
neural networks that allow for predicting outcomes 
from complex inputs such as multilayer cross-sectional 
images or time series electronic health record (EHR) 
data.5 Natural language processing and large language 
models use computational techniques to analyze the 
content and meaning of text, supporting both data 
extraction and text generation.6,7 Such models can 
collate relevant clinical trial data from multiple studies, 
facilitating meta-analyses and future trial development.8 
Additionally, they can aid the technical writing required 
in trial development through drafting protocols, patient 
consent forms, or review board documentation.7 Here 
we discuss potential applications of these methods, col-
lectively referred to as AI, across key areas in pediatric 
clinical trials (Figure). In presenting the opportunities, 
we also highlight the critical risks and concerns that 
must be addressed as novel applications continue 

to emerge at an accelerated pace. Finally, given the 
broad potential applications of AI, we will limit our 
focus primarily on its role in clinical trials, recognizing 
its transformative potential spans across preclinical 
drug development, clinical pharmacology, and clinical 
decision support.9–11

Patient and Treatment Selection
Because AI improves the ability to accurately predict 

patient outcomes, we expect the promise of precision 
clinical trials to be realized, potentially allowing for 
shorter, smaller, and more cost-efficient trials.12 Prognos-
tic enrichment (including patients more likely to have an 
outcome) and predictive enrichment (including patients 
more likely to benefit from therapy) are recognized 
strategies for increasing trial efficiency.13 As just one of 
many examples, a recent study applied a mortality risk 
score to adults with heart failure in 4 community and 5 
clinical trial cohorts, finding that selecting higher-risk 
patients would markedly increase the expected event 
rate and could reduce trial size by almost 70%.14 Con-
versely, in adults with sepsis, prospectively selecting 
only those patients at moderate risk of death could 
have resulted in a positive clinical trial of a polyclonal 
anti–tumor necrosis factor-α fragment antibody by 
excluding those too sick to benefit from treatment 
as well as those whose health would have improved 
regardless of trial arm.15

Predictive enrichment techniques have been com-
monly used in the field of oncology, which has estab-
lished a data-rich environment with a combination of 
genetic profiles, tumor markers, and multiple targeted 
therapies. Studies in adults have combined genomic 
profiles of a patient’s tumor with outcomes from prior 
trials to predict progression-free survival and select the 
therapy of most likely benefit.16,17 The use of AI in pedi-
atric oncology is more nascent with approaches largely 
based on retrospective analysis of published studies 
rather than prospective applications.18 Interestingly, 
there has been much progress in the more  challenging 
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environment of pediatric septic shock where deci-
sions must be made rapidly, often without rich data. 
Strategies for prognostic enrichment were reported a 
decade ago and have evolved rapidly to include both 
prognostic and predictive strategies within the same 
cohort.19,20 Recently, a study of pediatric patients with 
sepsis generated pediatric sepsis phenotypes with 
4 distinct biomarker profiles differing in their clinical 
trajectories.21 Consistent with studies in adults, there 
were children likely to benefit from anti-inflammatory 
therapies, whereas others might possibly be harmed.22

Prognostic and predictive enrichment strategies 
have the potential to support precision clinical trial 
design. To ensure benefit across pediatric populations, 
much work is needed to define disease-specific data 
patterns that reliably support diagnosis and prognosis. 
Successful AI will likely incorporate diverse inputs 
including laboratory and multi-omic data, as well as 
dynamically tracked data generated both in the course 
of health care and through wearable technology.23 As 
participant selection strategies integrate ever-more 
data sources, it will be critical to ensure availability of 
information among those most at risk of inequity, and for 
whom existing data may be incomplete or inaccurate. 
Inadvertently excluding those without access to the 
technologies needed to generate data, or for whom 
data privacy is paramount, becomes a primary concern 
to ensure equitable data capture. Indeed, the need 
for adequate data security is a primary challenge for 
adopting AI into clinical trials.24

Patient Identification and Recruitment
AI has the potential to streamline patient identifica-

tion and recruitment as well as to facilitate ongoing 
communication with patients and their families through-
out a trial. AI can combine structured data, such as 
diagnosis codes, with unstructured data from clinical 
notes to provide a curated population to then manu-
ally screen for trial eligibility, significantly  improving 

screening efficiency.25 Trial-centric strategies, in which a 
patient population is assessed on criteria for a specific 
trial, and patient-centric strategies, in which known tri-
als are matched to a specific patient, have both been 
proposed.26 One study reviewed 215 pediatric oncology 
patients across 55 trials and found that AI could cut 
screening workload by up to 90%.27 Importantly, AI can 
maintain both high sensitivity and negative predictive 
value to ensure identification of all potentially eligible 
patients.28 In addition to cohort identification, embed-
ding AI within the EHR can allow for real-time identifi-
cation of patients for whom timeliness of intervention 
is critical, such as in the emergency department or 
intensive care unit.29,30 Going beyond simply identify-
ing potentially eligible patients, recent studies have 
used clinical, demographic, and trial characteristics to 
predict whether patients would agree to consent for a 
clinical trial.31,32

Identifying potential participants and predicting 
who would be most likely to consent is presumed to 
decrease resources required for patient recruitment, 
yet it will be essential to ensure inequity is not perpetu-
ated by integrating bias into the recruitment pipeline. 
This is a critical risk in the use of AI for recruitment. For 
example, Ni et al31 found that Black children and those 
with income less than 50% of the poverty line were 
less likely to consent to a clinical trial in a pediatric 
emergency department than White children and those 
from households with higher income. Selecting trial par-
ticipants based on likelihood of consent would exclude 
Black children and those living in poverty. Women and 
minorities are consistently underrepresented in clinical 
trials, and equitable enrollment must actively seek out 
these groups rather than avoiding approaching them 
for consent.33 Encouragingly, an AI tool was able to 
evaluate how adjusting eligibility criteria could allow 
for inclusion of more women in a nationwide database 
of adults with lung cancer, indicating similar analyses 
should be applied to pediatric populations.34

Figure. Proposed use cases for AI throughout the pediatric clinical trial life cycle.

AI, artificial intelligence.
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Beyond the existing use cases where AI is used 
to identify potential cohorts for study, we suggest AI 
has the potential to disrupt the recruitment process. 
Generative AI has the capability of interacting through 
audio, visual, and written interfaces by using language 
and context specific to the user. We expect the scenario 
to emerge where children and their guardians can 
engage with a multimodal chatbot to learn more 
about the research and to answer questions specific 
to the potential participant’s lived context. Such an 
interaction could be guided to ensure understanding 
of the research and completion of a valid consent 
process. The chatbot could remain available through 
the life cycle of a trial and be personalized to optimize 
participant engagement and retention. In addition 
to solving regulatory hurdles to such a use case, it 
will be critical to ensure that such technology does 
not cross the line from being informative to being 
coercive. As these technologize become more 
personalized, associated institutional review board 
and regulatory oversight will be needed to ensure 
adequate protections for both patient and patient 
heath information.

Data Capture and Analysis
Clinical trials traditionally require labor-intensive 

and costly manual data entry for safety and endpoint 
documentation. AI is already being used to extract 
real-world data from the EHR, as well as to detect data 
anomalies that may occur in the data entry process.35,36 
Automated extraction allows for increased complexity 
of outcomes; in addition to structured clinical data such 
as length of stay or mortality, AI can analyze disease 
trajectories, medical images, and clinical notes.37 The 
analysis of time-series data, especially from existing 
monitoring devices and wearable technology, can 
provide rich information and minimize trial burden on 
families.24 Further, AI could be used to define novel trial 
endpoints. For example, wearable data have shown 
potential in measuring attention-deficit/hyperactivity 
disorder and sleep problems in children, and AI 
analysis of interaction with a digital app may improve 
autism detection.38–40 Similarly, AI image interpretation 
has comparable accuracy to trained specialists in 
detecting breast cancer screening mammograms and 
discriminating malignant from benign skin lesions.41,42

Today, trial endpoints are typically manually 
adjudicated. While this can contribute significant cost 
and time burden to trials, it is a necessary process for 
minimizing bias and ensuring endpoints are related 
to the study intervention or procedures.43 Automating 
endpoint evaluation could standardize assessment 
and hasten trial completion.44 In adult heart failure, AI 
has demonstrated equivalent performance to a manual 
adjudication process.45

As algorithms for automating measurements multiply, 
there is increasing urgency for validating AI-generated 

endpoints for use in clinical trials. Extracting accurate 
EHR data requires efficient data processing as well as 
robust methods for dealing with biases in EHR data, 
including missing data points or patients lost to follow-
up.46,47 As with consent, there is the potential for AI to 
interact with participants, providers, and investigators 
to maximize the completeness and quality of data. 
One might even imagine the scenario where a chatbot 
engages with a participant to assess patient-reported 
outcomes in a culturally responsive manner while also 
considering their age and language ability.

Risks and Limitations
A foundational pillar for advancing AI in clinical trials 

must be to vet its application with a degree of scrutiny 
that matches the potential harm to participants and 
patients. If inequity and error persist in the generation 
of evidence, structural inequity will continue. The recent 
Executive Order on the Safe, Secure, and Trustworthy 
Development and Use of Artificial Intelligence details 
the critical necessity for adequate oversite and 
regulation to ensure adherence to best practices 
and minimization of harm for these rapidly evolving 
technologies.48 Using AI to generate technical writings 
that are subsequently reviewed by personnel with 
appropriate expertise and training may not warrant 
regulation. However, AI that affects patient selection 
or data measurement, analysis, or interpretation will 
require a regulatory framework to ensure appropriate 
patient protections and to limit furthering disparities in 
patient care.49 Without such oversight, AI trained on 
existing data in which there are discrepancies in care 
or outcomes between groups will perpetuate bias.50 
Any use of AI that diminishes trustworthiness and 
representativeness of clinical trials must be avoided 
at all costs.

AI tools only perform well if their input data match 
the clinically relevant population. AI must be trained on 
diverse cohorts, which will require collaboration and 
data sharing across medical centers and institutions.49 
Like with drug therapies, in which dosing or efficacy 
in children should not be merely extrapolated from 
adult trials, AI must also be validated for population- 
and disease-specific cohorts prior to deployment. 
The exponential increase in publications evaluating 
AI for clinical applications must be accompanied with 
transparent reporting of model performance with 
adherence to reporting guidelines such as CONSORT-
AI, with careful attention to prospective validation.51–53 
Generative AI is at particular risk for factual errors, and 
for bias and harm, when responding to clinical questions 
or developing scientific reports.54,55 Guardrails will be 
critical for any application using text generation, and for 
now, such applications are expected to require manual 
auditing to ensure the veracity of the provided text.

Overall, there is great potential for AI to streamline 
the clinical trial, from initial protocol development 
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through results dissemination and manuscript prepa-
ration. Coupling AI with advances in trial design, such 
as for pragmatic trials and master protocols testing 
multiple drugs in the same platform, has the potential 
to facilitate the completion of pediatric clinical trials 
across therapies and populations.
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